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A B S T R A C T   

Rational design of bifunctional two-dimensional (2D) heterostructures with excellent activity and durability 
remains a great challenge for electrocatalytic water splitting. Herein, we propose a topochemical domain en-
gineering to realize 2D mosaic heterostructures with ultrafine phosphide nanodomains highly dispersed on the 
surface of Ru doped CoMoO4 nanosheets (denoted as Ru-CMOP), which are vertically interconnected on the 
conductive skeleton assembling a 3D array structure. The as-prepared Ru-CMOP electrocatalyst exhibits excellent 
activity and long-term stability with the overpotentials of 114 and 286 mV at 100 mA cm− 2 for hydrogen 
evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, respectively, out-
performing most reported metal phosphide-based bifunctional heterostructures. Moreover, an assembled elec-
trolyzer using the Ru-CMOP as anode and cathode simultaneously delivers cell voltages of 1.697 V and 1.828 V to 
achieve 100 mA cm− 2 and 500 mA cm− 2, respectively, with outstanding durability at 250 mA cm− 2 for 120 h. 
Density functional theory calculations and experimental results indicate that the strongly coupled hetero-
interfaces with built-in electric field can facilitate electron transfer while multi-porous nanosheet arrays 
contribute to active sites exposure and mass/gas transport, thereby synergistically accelerating the reaction ki-
netics. Additionally, combining with a commercial silicon photovoltaic solar cell, the electrolyzer can be effi-
ciently and robustly established, demonstrating the great potential for practical photovoltaic-electrolysis 
applications.   

1. Introduction 

Electrocatalytic overall water splitting to generate hydrogen and 
oxygen is a green and sustainable approach with zero carbon emission, 
which has great potential to become a crucial part of the renewable 
energy landscape in the future [1,2]. In this scenario, hydrogen evolu-
tion reaction (HER) and oxygen evolution reaction (OER) have been 
widely investigated [3], while developing efficient bifunctional elec-
trocatalysts that yield large current densities at low overpotentials in 
alkaline media is challenging but paramount in terms of bringing the 
future water-splitting technique to reality [4,5]. The sluggish reaction 
kinetics of water activation are still the determinants. Toward this end, 

efficient strategies are demanded to realize high-performance alkaline 
bifunctional electrocatalysts for industrial-scale water-splitting devices 
[6]. 

Heterostructure construction via judiciously designing hetero-
interfaces has emerged as one of the most effective methods to promote 
intrinsic activity for surface-mediated electrochemical reactions [7–9]. 
Besides, a two-dimensional (2D) nanosheet structure featuring a high 
specific surface area is desired for the liquid-phase catalytic reaction by 
fully exposing accessible surfaces [10–12]. Therefore, the 2D nanosheet 
heterostructures have been paid much attention as they can be stronger 
contenders in the electrocatalytic field [13,14]. Taking 2D 
phosphide-based heterostructure as an example because of its excellent 
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activity, it can be obtained through a partial phosphorization treatment 
to construct an assembler with the generated phosphide onto the surface 
of 2D metal-based precursors [15,16]. However, the born phosphide 
bulks generally huddle on the surface of the 2D precursor owing to their 
high surface energy, which just creates another integrated surface by 
shielding the interfacial heterojunctions from participating in chemical 
reactions and limiting the reaction kinetics. Therefore, it is of significant 
importance to engineer the surface chemical configuration for 2D het-
erostructure design to transform the inert basal planes into abundant 
active sites [17]. In this regard, elaborately downsizing secondary 
phosphide building blocks onto the surface of nanosheet precursors (e.g., 

nanodomain modulation) provides a feasible approach for designing a 
2D phosphide-based heterostructure with abundant phase boundaries 
and exposed active sites to boost the surface-mediated reaction kinetics. 

Following the above design principle, we develop a controllable 
phosphorization process to in-situ produce ultrafine Ru-doped CoMoP 
(Ru-CMP) nanodomains uniformly dispersed on the Ru-doped CoMoO4 
(Ru-CMO) nanosheet arrays to construct a heterostructure (denoted as 
Ru-CMOP) for highly efficient overall water splitting at high current 
density. This method can be demonstrated as one stone with three birds: 
(i) the generated ultrafine Ru-CMP nanodomains with uniform distri-
bution can activate the basal planes and create rich phase boundaries on 

Fig. 1. (a) Schematic illustration for the preparation process of Ru-CMOP. (b,c) SEM, (d) TEM, and (e) HRTEM images of Ru-CMOP (insets of d: statistical calculation 
of diameter (lower left); TEM image of a typical Ru-CMOP nanosheet (upper right). Inset of e: SAED pattern and facet spacing details). (f) HAADF-STEM image and 
elemental mapping of a representative Ru-CMOP nanosheet. 
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Ru-CMO nanosheets to increase the number of active sites; (ii) the 
created heterointerfaces can form a built-in electric field and the active 
Ru species can also optimize the electronic structure, synergistically 
facilitating the electron transfer; (iii) the interconnected heterostructure 
nanosheet assembled as 3D multi-porous arrays can expedite the 
continuously produced gas bubble escape from the active sites to 
strengthen mechanical stability. The as-obtained Ru-CMOP exhibits an 
excellent HER activity with overpotentials of 114 and 183 mV at − 100 
and − 500 mA cm− 2, respectively, and a remarkable OER activity with 
overpotentials of 286 and 351 mV at 100 and 500 mA cm− 2, respec-
tively. The electrocatalyst also has long-term stability under strong 
reducing/oxidating conditions. Additionally, when employed as a 
bifunctional catalyst for alkaline water splitting, the Ru-CMOP delivers 
cell voltages of 1.697 V and 1.828 V at 100 mA cm− 2 and 500 mA cm− 2, 
respectively, with outstanding durability at 250 mA cm− 2 for 120 h. 
Impressively, a solar-cell-driven overall water-splitting device is well- 
constructed to demonstrate its effective and robust practical operation. 

2. Results and discussion 

2.1. Synthesis and characterization of Ru-CMOP heterostructure 

The Ru-CMOP heterostructure is synthesized through a facile two- 
step procedure, as illustrated in Fig. 1a. The Ru-doped CoMoO4 (Ru- 
CMO) nanosheet arrays are firstly grown on nickel foam (NF) via a hy-
drothermal reaction with precisely controlling Ru doping, then sub-
jected to a controllable phosphorization treatment through a facile gas- 
solid reaction [18]. As a result, the Ru doped CoMoP (Ru-CMP) nano-
domains are in-situ generated on the surface of Ru-CMO nanosheets. 
Scanning electron microscopy (SEM) images of as-obtained Ru-CMOP 
exhibit a uniform 3D array structure assembled by vertically aligned 2D 
heterostructure nanosheets on the skeleton of NF (Fig. 1b, c and Fig. S1). 
Abundant spatial voids exist among the interconnected nanosheets, 
which are well-inherited from the structure of the Ru-CMO precursor 
(Fig. S2), contributing to the fast mass transfer and gas release during 
the electrocatalytic reaction [19]. Observed from transmission electron 
microscopy (TEM) images of the Ru-CMOP nanosheet, Ru-CMP nano-
domains with a dark contrast can be readily distinguished, revealing 
that they are uniformly dispersed on the Ru-CMO phase with a large 
number of phase boundaries and distinct heterointerfaces (Fig. 1d and 
S3) [20]. The nanodomains have an average diameter of 5.5 nm and the 
thickness of the Ru-CMOP heterostructure is about 10 nm (insets of 
Fig. 1d). In Fig. 1e, the high-resolution TEM (HRTEM) image of the 
nanodomains exhibits the interplanar spacings of 0.217 and 0.221 nm, 
corresponding to the (211) and (202) planes of Ru-CoMoP crystals [21]. 
The corresponding selected area electron diffraction (SAED) image il-
lustrates the polycrystalline nature of the phosphatized nanodomains 
[22]. In this regard, for the controllable phosphorization process, 
regulated PH3 gas with a low dose derived from the decomposition of 
NaH2PO2 attacks the lattice of Ru-CMO precursor at the gas-solid 
interface. Then, the P atoms partially substitute the lattice O to 
generate the Ru-CMP nanodomains on the Ru-CMO sheet surface, 
thereby forming the 2D mosaic heterostructure with rich phase bound-
aries and heterointerfaces (Fig. S4) [23]. 

The high-angle annular dark-field scanning TEM (HAADF-STEM) 
and corresponding elemental mappings of the Ru-CMOP heterostructure 
demonstrate the coexistence and homogeneous distributions of Co, Mo, 
O, P elements, and slight amount of Ru dopant element across the sheet- 
structure in a holistic view (Fig. 1f). Additionally, as a comparative 
experiment, the pristine CMO counterpart without Ru doping is syn-
thesized (Fig. S5 and S6); and then the CMOP heterostructure is obtained 
via an identical phosphorization process (Fig. S7 and S8). For the CMOP 
heterostructure, it is found that the CMP nanodomains in-situ grow on 
the CMO nanosheets as well but without decent dispersion, suggesting 
the alien Ru species are important for the nanodomains dispersion [24]. 
Moreover, the powder samples of Ru-CMO and Ru-CMOP are prepared 

without using NF as substrates. The SEM images show that the 
non-uniform Ru-CMO nanosheets stack together with the lateral di-
mensions ranging from micrometer to nanometer scale (Fig. S9a, b). The 
as-obtained Ru-CMOP powders trend to agglomerate after the following 
phosphorization treatment, potentially decreasing the mass transfer and 
surface contact with electrolyte (Fig. S9c, d). In turn, these findings 
suggest the superiority of the self-supported sheet arrays aligned on NF 
skeleton with structural stability and uniformity. In a word, these results 
indicate the uniform generation and distribution of ultrafine Ru-CMP 
nanodomains on the Ru-CMO nanosheet with well-defined hetero-
interfaces by an intentional interface engineering, which can activate 
the basal planes and create rich active sites on the sheets to boost the 
catalytic efficiency. These 2D mosaic heterostructure nanosheets are 
vertically interconnected on the conductive skeleton assembling a 3D 
array structure with abundant porous channels. 

The X-ray diffraction (XRD) result of the Ru-CMOP sample displays 
the pattern of the CoMoO4 besides the strong peaks of metallic Ni 
skeleton (Fig. 2a) [25], which is identical to those of the Ru-CMO and 
the CMO precursors (Fig. S10). Notably, there are no peaks ascribed to 
the ultra-fine Ru-CMP nanodomains, suggesting their good dispersion on 
the 2D Ru-CMO support, in line with the results of TEM characteriza-
tions [26]. In addition, the digital photographs of samples reveal that the 
optical color of the electrode remarkably turns from pink to gray after 
the phosphorization treatment, illustrating the phase transformation 
(Fig. S11). 

The survey XPS spectrum across a wide energy range of Ru-CMOP 
indicates the additional existence of P elements as compared with that 
of Ru-CMO, indicating the occurrence of effective phosphorization 
(Fig. S12a). For the depth-profiling XPS spectra of P 2p (Fig. 2b), only 
the P-O peak signal is detected due to the inevitable surface oxidation of 
metal phosphides resulting from the exposure to air. Then, the P− M (M 
= Co, Mo, Ru) bond at around 129.5 eV appears after the Ar ion sput-
tering and remains unchanged as the sputtering duration increases [27], 
indicating the Ru-CMP nanodomains embedded in the Ru-CMO nano-
sheet skeleton. Fig. 2c deconvolutes C 1 s and Ru 3d peaks in Ru-CMOP 
and Ru-CMO. The detected C 1 s peaks are originated from the carbon 
tape used in the XPS test and the contamination with environmental 
carbon. The binding energies of Ru 3d5/2 and Ru 3d3/2 peaks of the 
Ru-CMOP sample are centered at 281.38 and 285.78 eV, respectively 
[28], which is a slight shift towards lower binding energies as compared 
to those of Ru-CMO (Ru 3d5/2/Ru 3d3/2: 281.48 eV/285.88 eV). In the 
meanwhile, the high-resolution Co 2p spectra of the two samples can be 
deconvoluted into two spin-orbit doublets and two shakeup satellites 
(denoted as “Sat.”) (Fig. 2d). For the Ru-CMOP, the first doublet at 
781.24 and 783.96 eV and the second at 797.18 and 799.58 eV are 
attributed to Co 2p3/2 and Co 2p1/2, respectively [29]. It is observed that 
the phosphorization treatment leads to an upshift behavior of the Co 2p 
spectra for Ru-CMOP as compared to those of Ru-CMO. Moreover, the 
Mo 3d and O 1s peaks also exhibit positive shifts as compared to the 
Ru-CMO precursor (Fig. S12b, c). In the Mo 3d region of Ru-CMOP, two 
significant peaks located at 232.54 and 235.66 eV are assigned to the Mo 
3d5/2 and Mo 3d3/2, accordingly, indicative of an oxidation state for + 6 
[30]. These results signify the charge redistribution occurs after the 
formation of Ru-CMP nanodomains due to the strong interfacial 
interaction. 

To further illustrate this, the differential charge density is calculated 
to identify the charge distribution on the Ru-CMO and Ru-CMOP 
(Fig. 2e). For the Ru-CMO, an accumulation charge density can be 
clearly visualized around the Ru doping atoms in the CMO lattice. After 
the addition of Ru-CMP on Ru-CMO, an obvious charge accumulation is 
observed at the interface between Ru-CMO and Ru-CMP, indicating the 
formation of a built-in electric field near the heterointerface [31], which 
establishes the highway of continuous electron transport between the 
two phases [32]. Those results demonstrate that the Ru doping and 
Ru-CMP assembling could induce the redistribution of the electronic 
structure, which results in the enhanced electron circumstances for 
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catalyzing the electrocatalytic reaction [33]. 

2.2. HER and OER performance in alkaline media 

The HER performance of the as-obtained Ru-CMOP is evaluated in an 
Ar-saturated 1.0 M KOH aqueous solution with a typical three-electrode 
system. Samples of Ru-CMO, CMOP, and CMO as counterparts and Pt/C 
as a benchmark are measured under identical conditions for comparison. 
The polarization curves of the tested catalysts for HER are presented in  
Fig. 3a. As a result, the Ru-CMOP exhibits significantly superior HER 
performance than the comparative samples, especially in high current 
density. Specifically, in comparison of CMOP (199, 232, and 280 mV), 
Ru-CMO (241, 275, and 332 mV), CMO (265, 315, and 426 mV), and Pt/ 
C (193, 257, and 322 mV), Ru-CMOP delivers the current densities of 
100, 200, and 500 mA cm− 2 at the low overpotentials of 114, 142 and 
183 mV, respectively (Fig. 3b). As shown in Fig. 3c, the Tafel slope of 
Ru-CMOP exhibits the lowest value of 96 mV dec− 1 as compared with 
those of CMOP (108 mV dec− 1), Ru-CMO (120 mV dec− 1), CMO 
(197 mV dec− 1), and Pt/C (192 mV dec− 1), indicating the rapid kinetics 
of Ru-CMOP owing to the introduction of Ru dopant and the generation 
of ultrafine Ru-CMP nanodomains [34]. Besides, the Nyquist plots in 
Fig. S13 reveal that the Ru-CoMoP has the lowest charge transfer 
resistance (~ 1.4 Ω) than those of CMOP (~3.3 Ω), Ru-CMO (~21.0 Ω), 
and CMO (~28.8 Ω). 

The double-layer capacitance (Cdl) is evaluated by cyclic voltam-
metry measurements, which is a widely used method to determine the 
electrochemically active surface area (ECSA) [35]. The highest Cdl 
values of Ru-CMOP (153.5 mF cm− 2) among all catalysts (CMOP: 40.2 
mF cm− 2; Ru-CMO: 1.8 mF cm− 2; Ru-CMO: 1.3 mF cm− 2) implies the 
maximum catalytically active sites in Ru-CMOP for HER (Fig. S14 and 
S15). Afterward, the stability of Ru-CMOP for HER activity is evaluated 
via a chronopotentiometry (CP) curve at − 250 mA cm–2 for 60 h. As 

displayed in Fig. 3f and S16, there is no obvious potential change in this 
strong reducing environment for a long duration. The morphology of 
post-Ru-CMOP subjected to the HER stability test is well-sustained in the 
nanosheet-array structure (Fig. S17), suggesting the structural stability 
of the 3D architecture assembled from the 2D heterostructure nano-
sheets [36]. 

In the following, the OER performance of the catalysts is investigated 
in the Ar-saturated 1.0 M KOH solution via the three-electrode system. 
The commercial RuO2 is applied as a benchmark sample. As shown in 
Fig. 3a, the polarization curves of the tested catalysts indicate the Ru- 
CMOP possesses the best catalytic activity toward the OER. In the 
comparison of CMOP (311, 342, and 386 mV), Ru-CMO (363, 389, and 
433 mV), CMO (407, 438, and 483 mV), and RuO2 (360, 389, and 
442 mV), Ru-CMOP delivers the current densities of 100, 200, and 
500 mA cm− 2 at the low overpotentials of 286, 317 and 351 mV, 
respectively (Fig. 3d). In Fig. 3e, the Tafel slope of the Ru-CMOP is 
calculated to be 92 mV dec− 1, which is equal to that of Ru-CMO (92 mV 
dec− 1) and lower than those of CMOP (103 mV dec− 1), CMO (103 mV 
dec− 1), and RuO2 (105 mV dec− 1). This result demonstrates that the Ru 
doping contributes to the favorable kinetics for OER [37]. Observed 
from the Nyquist plots (Fig. S18), the Ru-CMOP exhibits the lowest 
charge transfer resistance (~1.9 Ω) as compared with CMOP (~2.9 Ω), 
Ru-CMO (~4.9 Ω), and CMO (~9.5 Ω). Additionally, the Cdl value of 
Ru-CMOP is found to be 17.1 mF cm− 2, being larger than that of CMOP 
(14.2 mF cm− 2), Ru-CMO (5.4 mF cm− 2), and CMO (3.3 mF cm− 2) 
(Fig. S19 and S20). 

Moreover, the Ru-CMOP shows decent stability at 250 mA cm− 2 for 
60 h without any noticeable degradation in the alkaline media (Fig. 3f). 
The polarization curves of Ru-CMOP after the OER stability test reveal 
that there is a small increment of overpotential (~16 mV) at 
100 mA cm− 2, implying the good stability of the catalyst for the strong 
and long-term OER process (Fig. S21) [27]. The SEM and TEM images of 

Fig. 2. (a) XRD pattern of Ru-CMOP. (b) Depth-profiling XPS spectra of P 2p for Ru-CMOP after Ar ion etching with different duration. (c) High-resolution XPS for Ru 
3d spectra coupled with C 1 s spectra of Ru-CMOP and Ru-CMO. (d) High-resolution XPS for Co 2p spectra of Ru-CMOP and Ru-CMO. (e) Differential charge density 
of Ru-CMO and Ru-CMOP, where the yellow and cyan contours represent electron accumulation (Δρ = +0.007 e × bohr− 3) and depletion (Δρ = − 0.007 e × bohr− 3), 
respectively. 
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Ru-CMOP subjected to the OER stability disclose the maintained 
sheet-array structure with newborn particles on the sheet surface [38], 
which could be ascribed to the formation of cobalt oxyhydroxides as real 
active sites for OER (Fig. S22 and S23), consistent with the previous 
reports [39]. Moreover, new broad peaks for Ru-CMOP subjected to the 
OER stability test are emerged at around 500 and 600 cm–1 in Raman 
spectra, revealing the generation of cobalt oxyhydroxides on the surface 
(Fig. S24) [40]. Additionally, as shown in Fig. 3g and Table S1, the 
excellent electrocatalytic activity of Ru-CMOP for both HER and OER in 
alkaline solution outperforms most of the reported phosphide-based 
bifunctional heterostructures, suggesting that Ru-CMOP is a promising 
candidate for overall water splitting. 

2.3. Overall water splitting application 

A two-electrode configuration using Ru-CMOP as both anode and 
cathode is built for overall water splitting in 1.0 M KOH electrolyte, 
which is denoted as Ru-CMOP||Ru-CMOP. Similarly, the CMOP||CMOP, 
Ru-CMO||Ru-CMO, and CMO||CMO two-electrode configurations are 
also constructed for comparison. As shown in Fig. 4a, the Ru-CMOP||Ru- 
CMOP exhibits the smallest cell voltage of 1.697 V to reach a current 
density of 100 mA cm− 2 superior to those of the CMOP||CMOP 
(1.809 V), Ru-CMO||Ru-CMO (1.846 V), and CMO||CMO (1.929 V). 
Notably, the Ru-CMOP||Ru-CMOP delivers high current densities of 200 
and 500 mA cm− 2 achieved by a cell voltage of 1.748 and 1.828 V, 
respectively (Fig. S25). Furthermore, the durability of this Ru-CMOP|| 
Ru-CMOP electrolyzer is examined at a high current density of 
250 mA cm− 2. As a result, the CP curve illustrates that the Ru-CMOP|| 

Ru-CMOP couple maintains a steady cell voltage at 250 mA cm− 2 for 
120 h (Fig. 4b), manifesting the excellent robustness of Ru-CMOP for 
overall water splitting. Taken together, the 3D array structure is 
assembled by the interconnected 2D Ru-CMOP heterostructure nano-
sheets, where the inert surface of oxide sheets is embedded by ultrafine 
phosphide nanodomains as rich catalytic active sites to facilitate the 
efficiency of overall water splitting (Fig. 4c). Moreover, such nanosheet 
arrays feature abundant multi-level porosity as open channels for mass 
diffusion and gas release, thereby endowing a large contact area with 
electrolyte to further promote the electrocatalytic activity and pre-
venting structure destruction from the bubble accumulation to 
strengthen the mechanical stability [41]. 

To further understand the electrocatalytic performance of Ru-CMOP, 
the total density of states (DOS) of the CMO, CMP, CMOP, and Ru-CMOP 
are calculated to investigate the electronic structures (Fig. 4d). As 
compared with single CMO and CMP, the CMOP heterostructure exhibits 
more states at the Fermi level. It can be deduced that new states are 
brought in around the Fermi level due to the strongly coupled electron 
orbitals near the heterointerface between CMO and CMP [42]. Hence, 
electrons are more probably transferred to higher unoccupied states via 
the enhanced transition states, contributing to a better conductivity of 
the CMOP hetero-system [43]. Moreover, the DOS states of Ru-CMOP 
near the Fermi level are higher than that of CMOP, confirming that Ru 
doping can further optimize the electron distribution with faster elec-
tron transfer within the heterostructure, which is consistent with the 
calculation results of differential charge density [44,45]. Therefore, the 
constructed strong heterointerfaces and the Ru doping can synergisti-
cally facilitate the electron transfer of the 2D heterostructures to 

Fig. 3. (a) Polarization curves for HER and OER in 1 M KOH solution. Overpotentials comparison of different current densities and the corresponding Tafel plots for 
(b,c) HER performance and (d,e) OER performance. (f) CP curves of Ru-CMOP without iR correction at − 250 mA cm–2 and 250 mA cm–2. (g) Comparison of 
overpotentials at –100/100 mA cm− 2 with the reported phosphide-based bifunctional heterostructures. 

Q. Quan et al.                                                                                                                                                                                                                                   



Nano Energy 101 (2022) 107566

6

accelerate the efficiency of electrocatalytic water splitting. 
To be verified the practical utilization potential, this Ru-CMOP||Ru- 

CMOP two-electrode device is integrated with a commercial silicon solar 
cell for solar-driven water electrolysis. The Ru-CMOP||Ru-CMOP couple 
can be effectively powered by the solar panel at the potential real-time 
output of ~2.00 V under sunlight irradiation with enormous bubbles 
violently emerging from both electrodes (Fig. S26 and Movie S1). 
Therefore, a solar cell-driven overall water-splitting device can be effi-
ciently and robustly achieved by the Ru-CMOP couple, demonstrating 
that the Ru-CMOP possesses a good potential as a bifunctional electro-
catalyst for industrial applications [46]. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107566. 

3. Conclusion 

In summary, the Ru-CMOP heterostructures are prepared by a top-
ochemical domain engineering, which is composed of the ultrafine Ru- 
doped CoMoP nanodomains well-dispersed on the Ru-doped CoMoO4 
nanosheet arrays. The Ru-CMOP exhibits excellent bifunctional HER and 
OER activity with long-term durability, which can be ascribed to the 
enormous active sites exposure, interfacial synergy effect, facilitated 
charge transfer, and multi-level open channels. Specifically, the Ru- 
CMOP shows an excellent HER activity with overpotentials of 114 and 
183 mV at − 100 and − 500 mA cm− 2, respectively, and a remarkable 
OER activity with overpotentials of 286 and 351 mV at 100 and 
500 mA cm− 2, respectively, outperforming most of the reported transi-
tion metal phosphide-based bifunctional heterostructures. Besides, the 
Ru-CMOP enables the alkaline overall water-splitting at cell voltages of 
1.697 V and 1.828 V to achieve 100 and 500 mA cm− 2, respectively, 
with decent catalytic durability at 250 mA cm− 2 for 120 h. Impressively, 
a solar-cell-driven overall water-splitting device can be efficiently and 
robustly constructed to demonstrate the great potential of bifunctional 
Ru-CMOP for practical application. 
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